Math 409 Midterm 1 practice \#1

Name:

This exam has 3 questions, for a total of 100 points.
Please answer each question in the space provided. No aids are permitted.

Question	Points	Score
1	40	
2	30	
3	30	
Total:	100	

Question 1. (40 pts)

In each of the following eight cases, indicate whether the given statement is true or false. No justification is necessary.
(a) Let E be a set and suppose that there exists a surjective function $f: \mathbb{R} \rightarrow E$. Then E is uncountable.
(b) If E is a subset of \mathbb{R} which has a supremum, then the set $-E=\{-x: x \in E\}$ has an infimum.
(c) Let $a \in \mathbb{R}$. Then $|a|<\varepsilon$ for all $\varepsilon>0$ if and only if $a=0$.
(d) If $\left\{E_{x}\right\}_{x \in \mathbb{R}}$ is a collection of finite sets indexed by the real numbers, then $\bigcup_{x \in \mathbb{R}} E_{x}$ is at most countable.
(e) Every subset of \mathbb{R} has at most two suprema.
(f) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Then $f^{-1}([0,1])=[-1,1]$.
(g) Let $A_{1}, A_{2}, A_{3}, \cdots$ be nonempty finite subsets of \mathbb{N} such that $A_{n} \cap A_{m}=\emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ by declaring $f(n)$ to be the least element of A_{n}. Then f is injective.
(h) Let $A_{1}, A_{2}, A_{3}, \cdots$ be nonempty bounded subsets of \mathbb{R} such that $A_{n} \cap A_{m}=\emptyset$ for all distinct $n, m \in \mathbb{N}$. Define the function $f: \mathbb{N} \rightarrow \mathbb{R}$ by $f(n)=\sup A_{n}$. Then f is injective.

Question 2. (30 pts)
(a) State the well-ordering principle.
(b) Prove that $2^{n-1} \leq n$! for all $n \in \mathbb{N}$.

Question 3. (30 pts)
(a) State the completeness axiom for \mathbb{R}.
(b) Let A be a nonempty bounded subset of \mathbb{R}, and consider the set $B=\left\{x^{2}: x \in A\right\}$. Prove that sup B exists.
(c) Give an example to show that the equality $\sup B=(\sup A)^{2}$ may fail in part (b).

